Cell surface GRP78 promotes tumor cell histone acetylation through metabolic reprogramming: a mechanism which modulates the Warburg effect

نویسندگان

  • Udhayakumar Gopal
  • Salvatore V. Pizzo
چکیده

Acetyl coenzyme A (acetyl-CoA) is essential for histone acetylation, to promote cell proliferation by regulating gene expression. However, the underlying mechanism(s) governing acetylation remains poorly understood. Activated α2-Macroglobulin (α2M*) signals through tumor Cell Surface GRP78 (CS-GRP78) to regulate tumor cell proliferation through multiple signaling pathway. Here, we demonstrate that the α2M*/CS-GRP78 axis regulates acetyl-CoA synthesis and thus functions as an epigenetic modulator by enhancing histone acetylation in cancer cells. α2M*/CS-GRP78 signaling induces and activates glucose-dependent ATP-citrate lyase (ACLY) and promotes acetate-dependent Acetyl-CoA Synthetase (ACSS1) expression by regulating AKT pathways to acetylate histones and other proteins. Further, we show that acetate itself regulates ACLY and ACSS1 expression through a feedback loop in an AKT-dependent manner. These studies demonstrate that α2M*/CS-GRP78 signaling is a central mechanism for integrating glucose and acetate-dependent signaling to induce histone acetylation. More importantly, targeting the α2M*/CS-GRP78 axis with C38 Monoclonal antibody (Mab) abrogates acetate-induced acetylation of histones and proteins essential for proliferation and survival under hypoxic stress. Furthermore, C38 Mab significantly reduced glucose uptake and lactate consumption which definitively suggests the role of aerobic glycolysis. Collectively, besides its ability to induce fatty acid synthesis, our study reveals a new mechanism of epigenetic regulation by the α2M*/CS-GRP78 axis to increase histone acetylation and promote cell survival under unfavorable condition. Therefore CS-GRP78 might be effectively employed to target the metabolic vulnerability of a wide spectrum of tumors and C38 Mab represents such a potential therapeutic agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetylation modification regulates GRP78 secretion in colon cancer cells

High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, t...

متن کامل

The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox

BACKGROUND Ketone bodies have both metabolic and epigenetic roles in cancer. In several studies, they showed an anti-cancer effect via inhibition of histone deacetylases; however, other studies observed faster tumour growth. The related molecule butyrate also inhibits growth of some cancer cells and accelerates it in others. This "butyrate paradox" is thought to be due to butyrate mediating his...

متن کامل

mTORC2 dictates Warburg effect and drug resistance

Metabolic reprogramming, a prominent phenotype in cancer cells, is the adaptation to shifts in the usage of metabolites, including glucose, fatty acids, amino acids, and glutamine. The central feature of this adaptation lies in the fact that cancer cells undergo glycolysis even in the presence of ample oxygen, contrary to normal cells. This aerobic glycolysis, termed “the Warburg effect,” has b...

متن کامل

PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis

Tumor-specific pyruvate kinase M2 (PKM2) is essential for the Warburg effect. In addition to its well-established role in aerobic glycolysis, PKM2 directly regulates gene transcription. However, the mechanism underlying this nonmetabolic function of PKM2 remains elusive. We show here that PKM2 directly binds to histone H3 and phosphorylates histone H3 at T11 upon EGF receptor activation. This p...

متن کامل

GRP78 enhances the glutamine metabolism to support cell survival from glucose deficiency by modulating the β-catenin signaling

To support the high rates of proliferation, cancer cells undergo the metabolic reprogramming: aerobic glycolysis and glutamine addiction. Though glucose regulated protein 78 (GRP78) is a glucose-sensing protein and frequently highly expressed in tumor cells, its roles in glucose and glutamine metabolic regulation remain poorly unknown. We report here that glucose deficiency-induced GRP78 enhanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017